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SVM-based bridge health condition
evaluation forecasting function method

and evaluation criteria1

Jianying Ren2, Mubiao Su3

Abstract. A new method for bridge structure health condition evaluation is proposed, i.e.
the forecasting function method, and probes into the determination of evaluation criteria. First,
Least Square Support Vector Regression (LS-SVR) is used to establish the forecasting function.
Then, the confidence interval is used to determine the first evaluation criterion ε1 and the second
evaluation criterion ε2 is determined for bridge structure health condition evaluation. Finally,
the difference between measured node deflection and predicted node deflection is calculated and
compared with both evaluation criteria for purpose of bridge structure health condition evaluation.
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1. Introduction

In view of the fact that frequent bridge accidents like sudden break-off etc. led
to material casualties and property losses, people begin to pay close attention to
bridge engineering safety [1]. Many factors may cause bridge collapse, but it is
certain that the long-term effect of loads and the material fatigue, corrosion and
ageing together with the lack of timely maintenance bring about internal damage
accumulation and resistance deterioration of bridge structure, thereby resulting in
accidents [2]. Effective means shall be timely employed to monitor and evaluate
the health condition of a large number of bridge structures in service and other
infrastructures so as to identify the structure damage in a timely manner and give
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early warning on possible disasters so as to avoid tragedies [3]–[5].
China has established health monitoring systems at scores of bridges like Jiangyin

Bridge, Humen Bridge, Nanjing Yangtze River Bridge, Runyang Bridge, Sutong
Bridge, Wuhu Yangtze River Bridge and Hangzhou Bay Sea-Crossing Bridge since
the 1990s, having gathered abundant research findings [6]. Principal indicators for
bridge structure health condition evaluation are structural dynamic characteristic
indicators like frequency, vibration mode and modal damping [7] etc., which is vul-
nerable to external environmental noise, and their practical application effectiveness
leaves much to be desired.

For the above reasons, this paper employs the latest data mining method, i.e.
SVM based on bridge structure deflection to propose a new method for bridge struc-
ture health condition evaluation on basis of reference [8], and probes into the method
for determining evaluation criteria.

2. Rationale of forecasting function method

2.1. Forecasting function model

Obtain substantive measured data samples of bridge structures in good condi-
tion using the bridge structural health monitoring system, and establish the fore-
casting function relationship between dependent variables and independent variables
of bridge structure using such data mining methods as Support Vector Regression
Machine

{y} = {f(P, x, t, ) · · · } , (1)

where {y} is a dependent variable, f(·) means a mapping function, P represents the
load condition, x stands for the load position, T means the environmental factor,
and so on.

2.2. Evaluation criteria ε1i and ε2i

The determination of evaluation criteria ε1i and ε2i, (i = 1, 2, · · · , n referring
to the number of measuring point), as the key technique for forecasting function
method, is currently considered one of the major and difficult issues that must be
addressed during bridge structure health condition evaluation.

2.2.1. Determination of ε1i. The value of ε1i, i = 1, 2, · · · , n is equivalent to
the “normal value” specified in the railway bridge assessment specification. Assign
significance level α to the residual error between the predicted value and measured
value that obey normal distribution, then Pα = α should be of low probability.
Determine the value of m through table look-up based on significance level of α and
the distribution regularity of residual error, and the confidence interval should be

[ŷi −mSi , ŷi +mSi] , i = 1, 2, · · · , L, · · ·n , (2)
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where ŷi is the predicted value of variable dependent on intact bridge structure and
Si denotes the standard deviation whose value is given by

Si =

√√√√ 1

N

N∑
j=1

(yij − ŷij)2 . (3)

whereyij means the jth measured value of the ith dependent variable, ŷij is the
jth predicted value of the ith dependent variable and N stands for the number of
samples. The measured value is considered normal when it falls in confidence in
interval (2), otherwise, an anomaly is considered to exist. Thus, it can be seen that
the evaluation criterion ε1i could be determined using the following formula

ε1i = mSi , i = 1, 2, · · · , L, · · ·n . (4)

2.2.2. Determination of ε2i. According to the allowable values (e.g. allowable
deflection and stress) of bridge structure response allowed by relevant bridge design
codes and examination specifications, the structure is considered unsafe when the
bridge structural health monitoring system detects that the measured value of a
certain dependent variable exceeds the allowable value. However, the said allowable
values are normally safety thresholds for structural response of designated section
(mid-span section). Nevertheless, since the load applied is smaller than designed
load during practical operation of bridge structure, bridge structure suffers from a
certain degree of damage, and the response values of bridge structure detected by
monitoring system normally fail to meet specification-defined safety threshold. As
a result, it is impossible for monitoring system to release early warning information
in a timely manner. To the end, this paper plans to employ the finite element
model that is the closest to the practical structure after model modification, and
to appropriately discount the integral stiffness of such finite element model (for
example, 90% of stiffness in good condition after discounting indicates a damage
degree by 10%).

2.3. Forecasting function method for bridge structure health
condition evaluation

Figure 1 shows the process of forecasting function method for bridge structure
health condition evaluation.

3. Support vector machine

Support Vector Machine [9] (SVM), as proposed by Vapnik et al. during pe-
riod from 1992 to 1995, is the latest and most practical part of statistical learning
theory and the youngest and fastest growing data mining method. SVM is divided
into Support Vector Classification (SVC) and Support Vector Regression (SVR) by
application. Since process for establishing forecasting function in this paper is a
regression problem, the least squares-support vector regression (LS-SVR) [9] is used
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Fig. 1. Flow chart of forecasting function method

to build the forecasting function. As a variant of general support vector regression
method, LS-SVR replaces inequality constraint with equality constraint and con-
verts the solving problem of quadratic programming into solving problem of system
of linear equations, thereby significantly simplifying the calculation and improving
the training rate.

4. Calculation example

In view of the fact that the impact coefficient for long-span railway bridge struc-
ture is relatively small (1 + µ ≤ 1.05 [7]), when a train passes through the bridge,
the train load is taken as quasi-static load for field test to monitor the deflection
of bridge structure (dependent variable) as well as the substantive data samples of
train velocity, axle weight and ambient temperature etc. (independent variables),
and to analyze the law that the deflection of bridge structure changes along with
the change in such independent variables as train velocity, axle weight and ambient
temperature by establishing the forecasting function relationship between dependent
variable and independent variable using data mining method based on monitoring
data.

A 64m single line rail simply-supported steel truss bridge is taken as an example
to verify the application of forecasting function method for bridge structure health
condition evaluation. In order to describe the implementation procedure of this
method, a main beam piece of the 64m single line rail simply-supported steel truss
bridge is used as research object (Fig. 2) to simplify the calculation. The dependent
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variable is the deflection of lower chord nodes 2–8. The independent variables are
load condition and load position in this paper. Since this is a simulation bridge
structure, all data samples are obtained by adding computed result of finite element
model to noise.

Fig. 2. Finite element model

4.1. Finite element model

The plane rod element is used to build the plane finite element calculation model
for a piece of main truss. There are in total 16 nodes (Fig. 2, larger normal letters),
and the rod piece between each two nodes is taken as a unit. A total of 29 rod
units (Fig. 2, smaller boldface letters) are determined, the unit elasticity modulus
E = 210GPa, the sectional dimension is as bridge drawing. Constrain the vertical
and longitudinal line displacement simulation fixed hinge support along the bridge
at node 1, and constrain the vertical line displacement simulation movable hinged
support at node 9.

Load condition: single locomotive, dual locomotives, triple locomotives, single
train (1 locomotive connected to 8 carriages, this arrangement makes it possible to
cover the bridge and keep such a state for a certain period of time), dual trains (2
locomotives connected to 8 carriages). The locomotives are of Dongfeng-IV with an
axle weight of 23 t as shown in Fig. 3, the carriage is of model C62 with an axle weight
of 20.15 t as shown in Fig. 4 [10]. The effect of vehicle-bridge coupled vibration is not
taken into account, the deflection at each lower chord node (nodes 2–8) is calculated
by simplifying train load to a series of static loads moving on the bridge.

4.2. Establishment of deflection forecasting function for
each lower chord node

Five load conditions are taken into consideration. The train moves from left to
right with a loading step of 4m, the calculation start when the first front wheel of
the train gets in contact with the bridge (the position of the first wheel set is 0) until
the last rear wheel set gets off the bridge (the position of the first wheel set: bridge
length + train length). Independent variables of forecasting function: quantity of
carriages x1 (0 or 8), quantity of locomotives x2 (1, 2 or 3), position of the first wheel
set of train x3 (value range from 0 to bridge length + train length), locomotive axle
weight and carriage axle weight are not taken as independent variables since they are
constants, the dependent variable is the deflection of seven lower chord nodes. Each



118 JIANYING REN, MUBIAO SU

node is provided with 178 training data samples. In order to check the generalization
of forecasting function, the load step for test sample calculation is 5m (different from
the step chosen for training sample, i.e. 4m) so as to ensure most data in test sample
are not included in training sample (142 in total). Use LS-SVR and training set for
the regression of deflection forecasting function for each node (7 forecasting functions
in total).

Fig. 3. Schematic diagram of axle weight and wheel base of Dongfeng-IV
locomotive (dimensions in m)

Fig. 4. Schematic diagram of axle weight and wheel base of carriage C62
(dimensions in m)

Substitute the independent variable {xi1, xi2, xi3}, (i = 1, 2, · · · , 142) in test
set sample into the deflection forecasting function for above 7 lower chord nodes,
respectively, to work out the corresponding predicted value of deflection. Fig. 5 and
Fig. 6 are the comparison charts between the predicted value of deflection of the five
nodes and the deflection value calculated using finite element model. The condition
is almost consistent at other nodes. Computational formula for residual error is
determined from the formula

error = ycalculated − ypredicted , (5)

where ycalculated means the deflection calculated by finite element method and ypredicted
represents the deflection calculated from the forecasting function.

As shown in Figs. 5 and 6, the predicted deflection fits well with theoretical cal-
culated deflection of the 5 lower chord nodes. The forecasting function for node
deflection established with LS-SVR is reliable and well generalized, all residual er-
rors being within the range of ±0.2mm and symmetrically distributed about zero
line. The substantial consistency with normal distribution means that the predicted
deflection has no abnormal value.
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Fig. 5. Chart of comparison between predicted values and theoretically calculated
values of lower chord nodes

Fig. 6. Residual plot of predicted values and theoretically calculated values of
lower chord nodes

4.3. Determination of evaluation criteria conclusions

The criteria ε1k and ε2k (k being the number of the node, 2 ≤ k ≤ 8) for
evaluation of the bridge with the forecasting function of each node are determined
by the method described in Section 1.2.
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4.3.1. Determination of the first evaluation criterion ε1k. Since the data sample
contains no measured data in this paper, the measured deflection is to be simulated
by adding Gaussian random number to the deflection in calculated data sample

yimeasured = yicalculated · (1 + εRi) , (6)

where i is the data sample number (1 ≤ i ≤ 142), yimeasured denotes the ith simulated
measured deflection, yicalculated represents the ith theoretically calculated deflection,
Ri stands for the ith normal distribution random number with the mean equal to 0
and variance equal to 1 and ε is the level of noise.

The noise level ε in this paper is 3%, in other words ε = 0.03. Substitute now
the simulated measured data sample with a noise level of 3% into formulae (3) and
(4), and assume that the significance level α = 0.05. Then m = 1.96 according to
table look-up.

Table 1 shows the evaluation criterion ε1k for each lower chord node.

Table 1. Evaluation criterion ε1k in mm for each lower chord node

Node number k 2 3 4 5 6 7 8
ε1k 0.8 1.2 1.4 1.6 1.4 1.2 0.8

According to the analysis of ε1k of each node, the mid-span node 5 has the largest
value of ε1k, which decreases gradually towards both ends, while the end nodes 2
and 8 have the smallest values of ε1k.

4.3.2. Determination of the first evaluation criterion ε2k. According to the Fun-
damental Code for Design on Railway Bridge and Culvert [11], the allowable value
of the mid-span deflection of simply-supported steel truss bridge is equal to 1/900
of the span. Since the span of steel truss bridge in this study is 64m, the allowable
mid-span deflection f = 64/900 = 0.0711m = 71.1mm.

The second evaluation criterion ε2qk for each lower chord point under any con-
dition is calculated, when elasticity modulus of all units in finite element model
(Fig. 2) is reduced by 10%. Table 2 shows the values of ε2qk for each lower chord
point under various load conditions.

de(%) =
E ·AWithout damage − E ·AWith damage

EAWith damage
· 100% =

=
AWithout damage −AWith damage

AWith damage
· 100% , (7)

where E means the elasticity modulus of material, AWithout damage is the sectional
area determined when the rod piece is free of damage and AWith damage represents
the sectional area determined when the rod piece is damaged. Table 2 shows the
evaluation criterion ε2qk for each lower chord node under various load conditions.
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Table 2. Evaluation criterion ε2qk in mm
for each lower chord node under various load conditions

Load condition node 2 node 3 node 4 node 5 node 6 node 7 node 8
Single locomotive 0.8 1.3 1.9 1.9 1.9 1.3 0.8
Dual locomotives 1.5 2.5 3.4 3.5 3.4 2.5 1.4
Triple locomotives 1.7 2.9 3.9 4.0 3.9 2.9 1.6

Single train 1.5 2.6 3.7 3.7 3.7 2.7 1.6
Dual trains 1.6 2.8 3.9 4.0 3.8 2.8 1.6

4.4. Health condition evaluation

Assuming there are two states of damage:

1. The unit 3 in finite element model as shown in Fig. 2 (indicated by smaller
boldface letter) is damaged by 20%, while unit 5 is damaged by 30%.

2. The unit 5 is damaged by 50%, while the unit 11 is damaged by 40%.

Check the effectiveness of health condition evaluation performed by the above fore-
casting function method.

Simulated calculation of the difference between the maximum deflection of each
node and maximum deflection in damage-free state is performed by the finite element
method for the two above states of damage and under various load conditions as
shown in Table 3.

Table 3. Difference between maximum deflection (in mm) in the two above states of damage
and maximum deflection in damage-free state (DS means the damage state)

Load condition DS node 2 node 3 node 4 node 5 node 6 node 7 node 8

1 locomotive 1 0.2 0.4 0.7 0.8 0.9 0.5 0.2
2 0.4 1.0 1.6 2.4 2.5 1.5 0.6

2 locomotives 1 0.5 1.0 1.4 1.5 1.5 1.1 0.5
2 1.0 2.2 3.2 4.4 4.3 3.0 1.4

3 locomotives 1 0.5 1.1 1.6 1.8 1.8 1.3 0.6
2 1.2 2.5 3.7 4.9 4.9 3.3 1.7

Single train 1 0.5 1.0 1.6 1.6 1.7 1.2 0.6
2 1.1 2.3 3.5 4.6 4.6 3.1 1.6

Dual trains 1 0.5 1.1 1.6 1.8 1.8 1.2 0.5
2 1.2 2.5 3.6 4.9 4.9 3.2 1.5

As indicated by boldface numbers in Table 3, the maximum deflection difference
is greater than ε1k at some nodes in damage state 1, when the program gives an
alarm signal indicating structural safety risk in a specification-allowed normal ser-
vice condition. As indicated by italic boldface numbers, the maximum deflection
difference is greater than ε2k at some nodes (which are normally near the units
with significant damage) in damage state 2, when the program gives critical alarm
indicating serious structural safety risk.
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5. Conclusion

This paper proposes a deflection-based forecasting function method for bridge
structure health condition evaluation. This method is composed of two major sec-
tions: First, establish correct forecasting function, second, determine two evaluation
criteria. Demonstration is performed with a simply-supported steel truss bridge on
railway as example. According to the result, forecasting function method could effi-
ciently and accurately evaluate the health condition of simply-supported steel truss
bridge structure on railway. In case of large bridge structures, it is advisable to
establish as many forecasting functions for node or section as possible when build-
ing forecasting function for health condition evaluation, omission may happen if
forecasting function fails to be established adequately.
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